
Scaling Symbolic Execution using Ranged Analysis

Junaid Haroon Siddiqui Sarfraz Khurshid
University of Texas at Austin

1 University Station
Austin, TX 78712

{jsiddiqui,khurshid}@ece.utexas.edu

Abstract
This paper introduces a novel approach to scale symbolic
execution—a program analysis technique for systematic ex-
ploration of bounded execution paths—for test input gener-
ation. While the foundations of symbolic execution were de-
veloped over three decades ago, recent years have seen a real
resurgence of the technique, specifically for systematic bug
finding. However, scaling symbolic execution remains a pri-
mary technical challenge due to the inherent complexity of
the path-based exploration that lies at core of the technique.

Our key insight is that the state of the analysis can be rep-
resented highly compactly: a test input is all that is needed
to effectively encode the state of a symbolic execution run.
We present ranged symbolic execution, which embodies this
insight and uses two test inputs to define a range, i.e., the
beginning and end, for a symbolic execution run. As an ap-
plication of our approach, we show how it enables scalabil-
ity by distributing the path exploration—both in a sequential
setting with a single worker node and in a parallel setting
with multiple workers. As an enabling technology, we lever-
age the open-source, state-of-the-art symbolic execution tool
KLEE. Experimental results using 71 programs chosen from
the widely deployed GNU Coreutils set of Unix utilities
show that our approach provides a significant speedup over
KLEE. For example, using 10 worker cores, we achieve an
average speed-up of 6.6X for the 71 programs.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Symbolic execution

General Terms Algorithms, Performance

Keywords Test input as analysis state, ranged analysis, par-
allel symbolic execution, incremental analysis, KLEE

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Introduction
Symbolic execution is a powerful program analysis tech-
nique based on a systematic exploration of (bounded) pro-
gram paths, which was developed over three decades ago [8,
23]. A key idea in symbolic execution is to build path
conditions—given a path, a path condition represents a con-
straint on the input variables, which is a conjunction of the
branching conditions on the path. Thus, a solution to a (feasi-
ble) path condition is an input that executes the correspond-
ing path. A common application of symbolic execution is
indeed to generate test inputs, say to increase code cover-
age. Automation of symbolic execution requires constraint
solvers or decision procedures [3, 10] that can handle the
classes of constraints in the ensuing path conditions.

A lot of progress has been made during the last decade
in constraint solving technology, in particular SAT [39] and
SMT [3, 10] solving. Moreover, raw computation power is
now able to support the complexity of solving formulas that
arise in a number of real applications. These technological
advances have fueled the research interest in symbolic ex-
ecution, which today not only handles constructs of mod-
ern programming languages and enables traditional analy-
ses, such as test input generation [7, 15, 22, 33], but also has
non-conventional applications, for example in checking pro-
gram equivalence [31], in repairing data structures for error
recovery [12], and in estimating power consumption [34].

Despite the advances, a key limiting factor of symbolic
execution remains its inherently complex path-based analy-
sis. Several recent research projects have attempted to ad-
dress this basic limitation by devising novel techniques,
including compositional [14], incremental [30], and paral-
lel [6, 16, 36, 40] techniques. While each of these techniques
offers its benefits (Section 5), a basic property of existing
techniques is the need to apply them to completion in a
single execution if completeness of analysis (i.e., complete
exploration of the bounded space of paths) is desired. Thus,
for example, if a technique times out, we must re-apply it
for a greater time bound, which can represent a costly waste
of computations that were performed before the technique
timed out.

This paper presents ranged symbolic execution, a novel
technique for scaling symbolic execution for test input gen-
eration. Our key insight is that the state of a symbolic exe-
cution run can, rather surprisingly, be encoded succinctly by
a test input—specifically, by the input that executes the last
terminating (feasible) path explored by symbolic execution.
By defining a fixed branch exploration ordering—e.g., tak-
ing the true branch before taking the false branch at each
non-deterministic branch point during the exploration—
an operation already fixed by common implementations of
symbolic execution [2, 7, 22], we have that each test input
partitions the space of (bounded) paths under symbolic ex-
ecution into two sets: explored paths and unexplored paths.
Moreover, the branch exploration ordering defines a linear
order among test inputs; specifically, for any two inputs (that
do not execute the same path or lead to an infinite loop), the
branching structure of the corresponding paths defines which
of the two paths will be explored first by symbolic execution.
Thus, an ordered pair of tests, say 〈τ, τ′〉, defines a range of
(bounded) paths [ρ1, . . . , ρk] where path ρ1 is executed by τ
and path ρk is executed by τ′, and for 1 ≤ i < k, path ρi+1

is explored immediately after path ρi.
Encoding the analysis state as a test input has a number of

applications. The most direct one is to enable symbolic exe-
cution to be paused and resumed. To illustrate, if an analysis
runs out of resources, the last test input generated allows it
to be effectively paused for resumption later (possibly on an-
other machine with greater resources) without requiring the
previously completed work to be re-done. Another key ap-
plication, which is the focus of this paper, is a novel way to
partition the path exploration in symbolic execution to scale
it—both in a sequential setting with one worker node and
in a parallel setting with several workers. The encoding al-
lows dividing the problem of symbolic execution into sev-
eral sub-problems of ranged symbolic execution, which have
minimal overlap and can be solved separately. It also allows
effective load balancing in a parallel setting using dynamic
refinement of ranges based on work stealing with minimal
overhead due to the compactness of a test input.

We make the following contributions:

• Test input as analysis state. We introduce the idea of
encoding the state of a symbolic execution run using a
single test input.

• Resumable symbolic execution. Our encoding allows
symbolic execution to be paused and resumed using min-
imal book-keeping—just a single test input.

• Two test inputs as analysis range. We introduce the idea
of using two test inputs to define a range of paths to be
explored using symbolic execution and to restrict it to
that range.

• Ranged symbolic execution. Restricting symbolic exe-
cution to a range allows simply using a set of inputs to
divide the problem of symbolic execution of all bounded

execution paths into a number of sub-problems of ranged
symbolic execution, which can be solved separately.

• Dynamic range refinement using work stealing. We
introduce load-balancing for parallel symbolic execution
using dynamically defined ranges that are refined using
work stealing.

• Implementation. We implemented ranged symbolic ex-
ecution using KLEE [7]—an open-source symbolic ex-
ecution tool, which analyzes LLVM [1], an intermediate
compiler language that is closer to assembly and only has
two-way branches, but has more type/dependency infor-
mation than assembly. We developed a work stealing ver-
sion using MPI [38] message communication.

• Evaluation. We evaluated ranged symbolic execution us-
ing 71 programs from GNU Coreutils—the widely de-
ployed set of Unix utilities. We observed an average
speedup of 6.6X for the 71 programs using 10 workers.

2. Illustrative overview
Forward symbolic execution is a technique for executing a
program on symbolic values [9, 23]. There are two funda-
mental aspects of symbolic execution: (1) defining semantics
of operations that are originally defined for concrete values
and (2) maintaining a path condition for the current program
path being executed – a path condition specifies necessary
constraints on input variables that must be satisfied to exe-
cute the corresponding path.

As an example, consider the following program that re-
turns the middle of three integer values.

1 int mid(int x, int y, int z) {

2 if (x<y) {

3 if (y<z) return y;

4 else if (x<z) return z;

5 else return x;

6 } else if (x<z) return x;

7 else if (y<z) return z;

8 else return y; }

To symbolically execute this program, we consider its be-
havior on integer inputs, say X, Y, and Z. We make no as-
sumptions about the value of these variables (except what
can be deduced from the type declaration). So, when we en-
counter a conditional statement, we consider both possible
outcomes of the condition. We perform operations on sym-
bols algebraically.

Symbolic execution of the program mid explores 6 paths:

path 1: [X < Y < Z] L2 -> L3

path 2: [X < Z < Y] L2 -> L3 -> L4

path 3: [Z < X < Y] L2 -> L3 -> L4 -> L5

path 4: [Y < X < Z] L2 -> L6

path 5: [Y < Z < X] L2 -> L6 -> L7

path 6: [Z < Y < X] L2 -> L6 -> L7 -> L8

x<y

y<z

ret y x<z

ret z

ρ

ret x

ρ

ρ

x<z

ret y

ρ′

x<z

ret z ret x

ρ′

Figure 1. Symbolic execution between paths ρ and ρ′.

Note that for each path that is explored, there is a corre-
sponding path condition (shown in square brackets). While
execution on a concrete input would have followed exactly
one of these paths, symbolic execution explores all six paths.

The path conditions for each of these paths can be solved
using off-the-shelf SAT solvers for concrete tests that exer-
cise the particular path. For example, path 2 can be solved to
X=1, Y=3, and Z=2.

Ranged symbolic execution enables symbolic exploration
between two given paths. For example, if path 2 and path 4
are given, it can explore paths 2, 3, and 4. In fact, it only
needs the concrete solution that satisfies the corresponding
path condition. Therefore it is efficient to store and pass
paths. Ranged symbolic execution builds on a number of key
observations we make:

• A concrete solution corresponds to exactly one path in
code and it can be used to re-build the path condition
that leads to that path. Solving a path condition to find
concrete inputs is computationally intensive. However,
checking if a given solution satisfies a set of constraints
is very light-weight. Thus we can symbolically execute
the method again and at every branch only choose the
direction satisfied by the concrete test.

• We can define an ordering on all paths if the true side of
every branch is always considered before the false side.
Since, every concrete test can be converted to a path, the
ordering can be defined over any set of concrete inputs.

• Using two concrete inputs, we can find two paths in the
program and we can restrict symbolic execution between
these paths according to the ordering defined above. We
call this ranged symbolic execution.

For example, consider that we are given test inputs
τ(X=1, Y=3, Z=2) and τ′(X=2, Y=1, Z=3) which take
paths ρ and ρ′ in code (path 2 and path 4 in above exam-
ple), and we want to symbolically execute the range between
them. We show this example in Figure 1. We start symbolic
execution as normal and at the first comparison x<y, we note
that ρ goes to the true side while ρ′ goes to the false side.

(a) Standard
symbolic execution

(b) Ranged sym-
bolic execution (4
ranges)

(c) Only bound-
aries redundantly
analyzed

Figure 2. High level overview of dividing symbolic execu-
tion into non-overlapping ranges for independent symbolic
executions.

At this point, we also know that ρ < ρ′ in the ordering we
defined. Thus, when x < y, we only explore what comes af-
ter ρ in the ordering and when x 6< y we explore what comes
before ρ′. At the next comparison y<z we skip the true side
and only explore the false side satisfied by ρ. Similarly we
can skip three states using ρ′. Skipped states are drawn in
gray color in Figure 1. Three paths are explored as a result.
We consider the range [τ, τ′) as a half-open interval where
the start is considered part of the range but not the end. Thus
we produce two test cases as a result.

Once we have the basic mechanism for ranged symbolic
execution, we use it in three novel ways:

• Resumable execution: Ranged symbolic execution en-
ables symbolic execution to be paused at any stage and
it can be restarted later with minimal overhead using the
last input it generated as the start of new range.

• Parallel execution: Ranges of symbolic execution can be
analyzed in parallel. For example, we can have three non-
overlapping ranges for the above example [null,τ),
[τ,τ′), and [τ′,null), where null designates un-
bounded end of a range. Executing these in parallel
will completely analyze the above function without any
communication between parallel nodes. Figure 2 shows
a high level overview of dividing symbolic execution
into non-overlapping ranges. Only the paths dividing the
ranges are redundantly analyzed as path of both ranges.
The initial set of dividing points can come from manual
or random test cases or from symbolic execution of a
previous version of code.

• Dynamic range refinement: We further provide an algo-
rithm for dynamic range refinement that enables parallel
symbolic execution using work stealing when there is no
initial set of inputs to form the ranges. For example, if a
parallel node starts symbolic execution of the mid func-
tion and reaches the first branch x<y, it proceeds with the
true branch while queueing the false branch in a list
of work to be finished later. In the meanwhile, if another
parallel node is free for work, it can steal work from the
queue of this node and explore paths where !(x<y).

3. Technique
In this section, we discuss using a single test case as analysis
state and using two test cases to define an analysis range
(Section 3.1), performing symbolic execution within a range
(Section 3.2), using ranged symbolic execution for parallel
and resumable analysis (Section 3.3), and dynamic range
refinement to enable distributed work stealing (Section 3.4).
Our presentation assumes a standard bounded depth-first
symbolic execution where path exploration is systematic and
for any condition, the “true” branch is explored before the
“false” branch. Such exploration is standard in commonly
used tools such as KLEE [7], JPF [26], and CUTE [33].

3.1 Test input as analysis state
We introduce three concepts in this section: (1) describing
analysis state with a single concrete test, (2) defining order-
ing of tests based on paths taken, and (3) using two concrete
tests to define a range of analysis.

We introduce the concept of describing analysis state with
a single concrete test.

Definition 1. Given the total order O of all paths ρ taken
by a path-based analysis, any concrete test τ defines a state
of analysis in which every path ρ < ρτ under O has been
explored and none of the rest has been explored. ρτ is the
path taken by test τ.

Definition 1 assumes the existence of translation from
concrete tests to paths and an algorithm to compare tests
based on the ordering taken by the path-based analysis. The
translation from concrete tests to paths can be done simply
by executing the test and observing the path it takes. In
practice, however, we will not need to find the corresponding
path separately and it will be calculated along with other
operations as discussed in the next section. Next, we discuss
test ordering.

Definition 2. Given two tests τ and τ′ and the correspond-
ing paths ρ and ρ′, where 〈[0, . . . , [i〉 is the set of basic
blocks in ρ and 〈[′0, . . . , [′i〉 is the set of basic blocks in ρ′,
we define that ρ < ρ′ if and only if there exists a k such that
∀ki=0[i = [′i and the terminating instruction in [k is a condi-
tional branch with [k+1 as the “then” basic block and [′k+1

as the “else” basic block.

Definition 2 orders tests based on the paths they take. We
find the first branch where the two paths differ. We consider
the test taking the “true” branch smaller than the test taking
the “false” branch. If two tests take the same path till the end,
we consider them equivalent. Ordering more than two tests
can be done by any sorting algorithm.

Definition 3. Let τ and τ′ be two tests with execution paths
ρ and ρ′ respectively, we define a range [τ, τ′) to be the set
of all paths ρi such that ρ ≤ ρi < ρ′.

Algorithm 1: Algorithm to compare two tests. This can
be used with any sorting algorithm to order any number
of tests.

input : test τ, test τ′

output: BIGGER, SMALLER, or EQUIVALENT

1 define path-cond ρ, address-space AS, address-space
AS’;

2 i = first instruction in func;
3 repeat
4 if i is-a conditional branch then
5 cond← condition of i;
6 if PathTakenByTest(τ, ρ∧cond, AS) then
7 if NOT PathTakenByTest(τ′, ρ∧cond, AS’)

then
8 return BIGGER;
9 end

10 ρ← ρ∧ cond;
11 i← first instruction in then basic block;
12 else
13 if PathTakenByTest(τ′, ρ∧cond, AS’) then
14 return SMALLER;
15 end
16 ρ← ρ∧ NOT(cond);
17 i← first instruction in else basic block;
18 end
19 else
20 update AS for i using τ;
21 update AS’ for i using τ′;
22 i← successor of i;
23 end
24 until i is the last instruction;
25 return EQUIVALENT;

The benefit of defining a half-open range is that given
three tests τa < τb < τc, we have [τa, τc) = [τa, τb) +
[τb, τc).

We extend this concept to a set of n tests. We can find the
paths taken by these tests and order them using the above
algorithm. If the tests take p distinct paths (p ≤ n), they
define p+ 1 ranges of paths. Note that p < n when multiple
tests take the same path in code and are thus equivalent.
The first and last range use special tests begin and end,
where begin is the smallest path and end is one beyond the
biggest path. The end is defined as one beyond the last path
because we define ranges as half-open and we want all paths
explored.

Lemma 1. Ranged analyses on a set of n − 1 ranges
[τ1, τ2), ..., [τn−1, τn) explore the same set of paths as the
ranged analysis on [τ1, τn).

This paper presents algorithms to perform symbolic exe-
cution of a program using ranges defined by tests. It shows
how to efficiently perform symbolic execution of only the
paths within a range. These algorithms are presented in the
next subsection.

3.2 Ranged symbolic execution
In this section, we apply the technique of defining ranges
of path-based analysis to symbolic execution. We call this
ranged symbolic execution.

Definition 4. Let τ and τ′ be two tests that execute paths
ρ and ρ′ where ρ < ρ′. Define ranged symbolic execution
for [τ, τ′) as symbolic execution of all paths ρi such that
ρ ≤ ρi < ρ′.

Performing ranged symbolic execution has two parts: (1)
defining the ranges given a set of tests and (2) symbolically
executing the paths within ranges.

To define ranges given a set of tests, we can use any sort-
ing algorithm given a comparator to compare two tests. Two
tests can be compared either by running them independently
and analyzing the branches they take or we can analyze two
paths simultaneously until we find the first difference. The
benefit of the second technique is that we only need to ex-
ecute the common part of two paths and not explore two
complete paths.

Algorithm 1 gives the algorithm for analyzing the com-
mon part of paths taken by two tests. The algorithm depends
on a predicate function that checks if a given test satisfies a
given condition. For that, we symbolically evaluate the path
condition for the values in the given test. Note that check-
ing if a path condition is satisfied by a given input is a very
efficient operation. In contrast, we need much more time to
solve a path condition to generate concrete test inputs using
a SAT solver. The two tasks differ in complexity.

To run symbolic execution between two tests, we have
to (1) convert them into paths, (2) find all paths between
them, and (3) execute those paths symbolically. We do all
three tasks simultaneously and thus we have no intermediate
storage requirements.

Symbolic execution state for a particular path contains
the set of path constraints and address space. At branches,
the state is split into two states. States to be visited in the
future are added to a queue of states. The order of choosing
states from the queue determines the search strategy used.
We use depth first search in this work.

For restricting symbolic execution to a range, we intro-
duce new variables to represent the starting and ending tests
in the symbolic execution state. The initial state gets the
starting and ending test parameters from program input. If
one of the parameters is the special begin or end symbol (i.e.
its unbounded), we just use null in its place. We perform
symbolic execution normally while using the function in Al-
gorithm 2 for conditional branches.

Algorithm 2: Algorithm for handling a branch for
ranged symbolic execution. Each state works within a
range defined by a start test τstart and an end test τend.
A new state is created using a basic block to start exe-
cution from, and a pair of tests to define the range.

input : state, branch, test τstart, test τend
output: set of states to be explored

1 cond← branch condition of branch;
2 BBthen ← then basic block of branch;
3 BBelse← else basic block of branch;
4 if τstart ∧ ¬(τstart ⇒ cond) then
5 return {new state(BBelse, τstart, τend)};
6 end
7 if τend ∧ τend ⇒ cond then
8 return {new state(BBthen, τstart, τend)};
9 end

10 if cond is unsatisfiable then
11 return {new state(BBelse, τstart, τend)};
12 else if ¬cond is unsatisfiable then
13 return {new state(BBthen, τstart, τend)};
14 else if both are unsatisfiable then
15 // triggers for unreachable code;
16 return ∅;
17 else
18 return {new state(BBthen, τstart, null), new

state(BBelse, null, τend) };
19 end

Algorithm 2 works by checking if the current state has a
starting test assigned and that starting test does not satisfy
the branch condition. Since we defined test ordering with
true branches preceding false branches, we need to eliminate
the true branch from the search. Similarly if we have an
ending test which does satisfy the branch condition, we
eliminate the false side from being explored.

3.3 Parallel and resumable analysis
Ranged symbolic execution enables parallel and resumable
analysis. For parallel analysis, we take a set of tests and
use them to divide the symbolic analysis into a number
of ranges. These ranges are then evaluated in parallel. We
can use more ranges then available workers so that workers
that finish quickly can pick another range from the work
queue. The initial set of tests can come from manual tests,
a symbolic execution run on a previous version of code, or
even from a shallow symbolic execution run on the same
code. In our evaluation, we pick random collection of tests
from a sequential run and use it to define ranges for the
parallel run. In the next section, we introduce another way
to parallelize that requires no initial set of tests. It uses work
stealing to get to-be-explored states from a busy worker to

a free worker, and in doing so, dynamically redefining the
ranges for both workers.

Ranged symbolic execution also enables resumable ex-
ecution, where we can pause symbolic execution and re-
sume it by giving it a concrete test corresponding to the last
path explored as the starting point. To use it in combination
with parallel analysis, we would also need the original end-
ing point of the paused range. In the evaluation, we show
a scheme, where pre-defined ranges are analyzed in incre-
ments resulting in negligible overhead and greater flexibility.

3.4 Dynamic range refinement
Dynamic range refinement enables dynamic load balancing
for ranged symbolic execution using work with work steal-
ing. It starts with a single worker node responsible for the
complete range [a, c). Whenever this node hits branches it
explores the true side and puts the false side on a queue to
be considered later. As other workers come, they can steal
work from this queue. The state on the queue is persisted as
a test case b and the range is redefined to [a, b). The stolen
range [b, c) is taken up by another worker.

Our implementation of distributed symbolic execution
using work stealing utilizes a master coordinator node and
uses MPI for communication. Algorithm 3 gives the algo-
rithm for work stealing coordinator. It maintains lists for
waiting workers and busy workers. Whenever a node needs
work it tries to find a busy worker and tries to steal work. If
a previously started stolen work request completes, it passes
the work to a waiting worker. Sometimes, a stolen work re-
quest fails because the node is already finished or there is no
work in the queue at that time. In such a case, it tries to steal
work from another worker node.

Algorithm 4 is the algorithm for a worker node. When
it receives a range from the coordinator, it performs ranged
symbolic execution on it. If it receives a request to steal
work, it checks if there is any state in the work queue. If so,
it converts the request to a concrete test to easily pass to the
coordinator, and redefines the current symbolic execution
range to end at that test. If there is no state in the work queue,
it informs the coordinator of a failure. The worker repeats
getting work and stealing ranges until the coordinator tells it
to shut down.

Using intermediate states in this manner is different from
using concrete tests that represent complete paths in code
(like Section 3.3). Intermediate states, on the other hand,
represent partial paths. Partial paths can result in overlapping
ranges and more work that absolutely necessary. We circum-
vent this by choosing zero values for any fields not accessed
by the concrete test. This extends the partial path to make a
complete path that satisfies a zero value assignment for the
remaining fields. It is possible that such a path ends up being
infeasible, but it is a complete path and sufficient to define
non-overlapping symbolic execution ranges.

Algorithm 3: Algorithm for work stealing coordinator.

1 define lists of waiting workers and busy workers;
2 count of workers with no theft started = 0;
3 give the whole task to the first worker;

4 while true do
5 receive message m from worker w;
6 if m=need work then
7 find a worker w2 where no theft has been

initiated;
8 if no such process then
9 increment count of workers with no theft

started;
10 if this count = total number of workers

then
11 terminate, we are done;
12 end
13 else
14 ask w2 to give stolen work;
15 end
16 add w to list of waiting workers;
17 else if m=stolen work then
18 give stolen work to a waiting worker w2;
19 remove w2 from list of waiting workers;
20 if count of workers with no theft started > 0

then
21 ask w2 to give stolen work (again);
22 decrement count of workers with no theft

started;
23 end
24 else if m=cannot steal then
25 choose another busy worker w2;
26 ask w2 to give some stolen work;
27 end
28 end

4. Evaluation
To evaluate ranged symbolic execution, we consider the
following research questions:

• How does ranged symbolic execution perform in a se-
quential setting with respect to standard symbolic execu-
tion?

• How does ranged symbolic execution perform in a paral-
lel setting using statically defined ranges with respect to
standard symbolic execution?

• How does ranged symbolic execution in a parallel setting
using dynamic range refinement perform in comparison
with using statically defined ranges?

• How does ranged symbolic execution in a parallel setting
using dynamic range refinement scale?

Algorithm 4: Algorithm for work stealing worker node
performing ranged symbolic execution.

1 while true do
2 receive message m from coordinator;
3 if m=exit then
4 terminate;
5 end
6 else if m=new work then
7 start ranged symbolic execution of new work ;
8 else if m=steal work then
9 if stealable states exist in symbolic execution

state then
10 remove state and convert it to a concrete

test;
11 send the concrete test to coordinator;
12 update the end of current symbolic

execution range;
13 else
14 inform coordinator that stealing failed
15 end
16 end
17 end

In the following subsections, we describe (1) the set of
test programs we use, (2) our methodology, (3) the experi-
mental results, and (4) the threats to validity.

4.1 Subjects
To evaluate ranged symbolic execution, we use GNU core
utilities (Coreutils)1 — the basic file, shell, and text manipu-
lation core utilities for the GNU operating system. Coreutils
are medium sized programs between 2000 and 6000 lines of
code. Some of these programs do a particular task with a lot
of error checks and thus form a deep search tree while oth-
ers perform multiple functions and form a broad search tree.
Deep trees likely provide less opportunity for efficient par-
allel analysis than broad trees. These utilities provide a good
mix of subject programs where parallelism in symbolic exe-
cution likely helps for some but not others.

Coreutils were also used in the evaluation of the KLEE
symbolic execution tool [7]. As, we build ranged symbolic
execution using KLEE, Coreutils provide a good benchmark
for comparison with KLEE.

We ran KLEE on each program in Coreutils for ten min-
utes and chose the 71 utilities for which KLEE covered more
than a hundred paths in this time.

4.2 Methodology
In this section, we discuss our evaluation setup, how we
ensure that all techniques cover the same paths for a fair

1 http://www.gnu.org/s/coreutils

comparison, how we define static ranges, and how we setup
work stealing.

We performed the experiments on the Lonestar Linux
cluster at the Texas Advanced Computing Center (TACC)2.
TACC enables reliable experiments as the processors are
fully allocated to one job at a time.

Ranged symbolic execution and standard symbolic ex-
ecution cover the same paths under a given depth bound.
However, our experiments also use a time bound of 10 min-
utes. Since ranged symbolic execution analyzes paths in par-
allel starting from many starting points, the paths it covers in
10 minutes may not be the same as those covered by standard
symbolic execution on the same program in 10 minutes. To
allow fair comparison we use the last test generated by stan-
dard symbolic execution as an upper bound for the ranged
executions. Thus, we ensure that every technique covers the
same paths. The time of standard symbolic execution shown
in the tables is calculated from the start of execution to when
this last completed path was covered.

For evaluating the performance of ranged symbolic exe-
cution using static ranges, we choose nine tests at random
from those generated using standard symbolic execution to
define ten ranges for ranged symbolic execution. The end
of the last range is fixed to the last test generated by stan-
dard symbolic execution (as discussed above). As the per-
formance of ranged symbolic execution depends on the tests
chosen randomly, we repeat the random selection and ranged
symbolic execution five times and find the minimum, maxi-
mum, and average of the times taken. We also find the mini-
mum, maximum, and average times for the range taking the
longest time for each set.

For evaluating the performance of ranged symbolic exe-
cution using dynamic range refinement, we use 10 worker
processors and 1 coordinator processor to symbolically ex-
ecute the same problem with no a priori division. This ex-
periment is not repeated multiple times as there is no non-
deterministic choice of ranges to be made. All ranges are
dynamically formed.

For evaluating how ranged symbolic execution in a paral-
lel setting using dynamic range refinement scales, we choose
15 programs and run parallel symbolic execution using 5,
10, and 20 workers. Specifically, we choose 5 programs that
gave the worst speedup, 5 programs that gave the median
speedup, and 5 programs that gave the best speedup using
dynamic range refinement on 10 workers.

4.3 Experimental results
Table 1 shows the results for all 71 programs we tested. The
second column has time for standard symbolic execution us-
ing KLEE. The third column gives the minimum, maximum,
and average times for covering the same paths divided into
10 ranges at random. The fourth column has the minimum,
maximum, and average time for the range taking the most

2 http://tacc.utexas.edu

Standard Resumable sym- Parallel symbolic execution using 10 workers
symbolic bolic execution using static random ranges using work

Program execution time (s) time (s) stealing
Name time (s) min / avg / max min / avg / max speedup time (s) speedup

base64 600 365 / 377 / 388 68 / 100 / 119 5.0 - 8.8X 83 7.2X
basename 156 110 / 115 / 126 18 / 32 / 63 2.5 - 8.6X 47 3.3X
cat 600 465 / 497 / 518 114 / 175 / 247 2.4 - 5.3X 90 6.6X
chcon 596 401 / 438 / 479 233 / 251 / 283 2.1 - 2.6X 193 3.1X
chgrp 569 283 / 301 / 325 68 / 138 / 175 3.3 - 8.4X 41 13.8X
chmod 550 243 / 256 / 267 73 / 78 / 88 6.2 - 7.6X 46 12.0X
chown 598 263 / 283 / 300 64 / 87 / 120 5.0 - 9.4X 41 14.4X
chroot 599 358 / 393 / 414 102 / 151 / 238 2.5 - 5.8X 330 1.8X
comm 607 730 / 929 / 1125 338 / 472 / 599 1.0 - 1.8X 630 1.0X
cp 600 231 / 264 / 290 58 / 120 / 175 3.4 - 10.3X 56 10.8X
csplit 601 349 / 366 / 387 105 / 162 / 196 3.1 - 5.7X 57 10.5X
cut 600 427 / 442 / 465 144 / 171 / 221 2.7 - 4.2X 105 5.7X
date 278 252 / 260 / 275 83 / 113 / 130 2.1 - 3.3X 84 3.3X
dd 601 353 / 379 / 402 121 / 162 / 195 3.1 - 5.0X 278 2.2X
df 341 151 / 153 / 154 38 / 59 / 69 5.0 - 8.9X 49 7.0X
dircolors 600 460 / 468 / 485 101 / 147 / 198 3.0 - 5.9X 113 5.3X
dirname 618 628 / 701 / 758 377 / 534 / 616 1.0 - 1.6X 574 1.1X
du 601 482 / 540 / 578 134 / 180 / 232 2.6 - 4.5X 115 5.2X
echo 600 400 / 419 / 441 112 / 156 / 203 3.0 - 5.3X 101 6.0X
env 600 492 / 503 / 512 114 / 171 / 236 2.5 - 5.3X 116 5.2X
expand 600 334 / 352 / 367 60 / 110 / 169 3.6 - 10.1X 59 10.2X
factor 609 609 / 622 / 640 93 / 156 / 185 3.3 - 6.5X 540 1.1X
fmt 601 743 / 781 / 826 142 / 176 / 215 2.8 - 4.2X 255 2.4X
fold 600 216 / 227 / 246 62 / 73 / 83 7.3 - 9.7X 45 13.3X
ginstall 596 429 / 451 / 500 105 / 163 / 232 2.6 - 5.7X 281 2.1X
groups 588 658 / 667 / 686 130 / 169 / 214 2.7 - 4.5X 350 1.7X
head 600 229 / 282 / 380 42 / 111 / 246 2.4 - 14.3X 85 7.1X
id 600 257 / 270 / 293 104 / 125 / 140 4.3 - 5.7X 49 12.3X
join 594 499 / 530 / 582 108 / 131 / 162 3.7 - 5.5X 192 3.1X
kill 600 207 / 214 / 223 43 / 65 / 107 5.6 - 13.9X 76 7.9X
ln 600 179 / 213 / 255 38 / 99 / 166 3.6 - 16.0X 53 11.4X
mkdir 596 605 / 735 / 847 259 / 313 / 400 1.5 - 2.3X 474 1.3X
mknod 609 549 / 790 / 1134 485 / 555 / 662 0.9 - 1.3X 572 1.1X
mktemp 600 352 / 375 / 402 197 / 212 / 256 2.3 - 3.1X 240 2.5X
mv 598 438 / 482 / 601 257 / 305 / 335 1.8 - 2.3X 353 1.7X
nice 600 254 / 299 / 368 80 / 153 / 255 2.3 - 7.5X 64 9.4X
nl 600 253 / 285 / 330 72 / 141 / 210 2.9 - 8.3X 53 11.3X
nohup 601 323 / 365 / 422 107 / 185 / 276 2.2 - 5.6X 290 2.1X
od 601 609 / 637 / 654 120 / 209 / 264 2.3 - 5.0X 122 4.9X
paste 600 380 / 397 / 433 85 / 130 / 206 2.9 - 7.1X 83 7.3X
pathchk 599 313 / 364 / 442 100 / 169 / 208 2.9 - 6.0X 178 3.4X
pinky 600 173 / 198 / 227 47 / 67 / 81 7.4 - 12.7X 46 13.1X
pr 601 538 / 580 / 606 93 / 169 / 237 2.5 - 6.4X 108 5.6X
printenv 588 337 / 549 / 749 96 / 251 / 352 1.7 - 6.2X 46 12.8X
printf 598 188 / 219 / 273 53 / 81 / 121 4.9 - 11.3X 46 12.9X
readlink 600 247 / 266 / 305 86 / 108 / 137 4.4 - 7.0X 41 14.7X
rm 603 344 / 375 / 392 109 / 148 / 194 3.1 - 5.6X 185 3.3X
runcon 598 227 / 252 / 280 54 / 86 / 141 4.2 - 11.2X 55 10.8X
seq 600 287 / 312 / 333 90 / 110 / 133 4.5 - 6.6X 105 5.7X
setuidgid 600 507 / 552 / 623 95 / 156 / 206 2.9 - 6.3X 253 2.4X
sha1sum 600 312 / 324 / 332 72 / 111 / 144 4.2 - 8.4X 70 8.6X
shred 600 334 / 397 / 452 96 / 154 / 203 2.9 - 6.3X 95 6.3X
shuf 600 338 / 358 / 380 82 / 114 / 142 4.2 - 7.3X 74 8.1X
split 600 496 / 513 / 524 134 / 206 / 254 2.4 - 4.5X 123 4.9X
stat 599 246 / 268 / 290 73 / 88 / 104 5.8 - 8.2X 79 7.6X
stty 601 154 / 170 / 183 37 / 49 / 74 8.2 - 16.5X 63 9.6X
su 418 331 / 340 / 348 115 / 134 / 143 2.9 - 3.6X 300 1.4X
sum 600 240 / 282 / 340 86 / 136 / 204 2.9 - 7.0X 52 11.5X
tac 602 381 / 480 / 579 210 / 313 / 406 1.5 - 2.9X 160 3.8X
tail 600 349 / 369 / 397 102 / 152 / 204 2.9 - 5.9X 81 7.4X
tee 600 280 / 306 / 336 84 / 128 / 207 2.9 - 7.1X 50 12.0X
touch 561 312 / 333 / 371 81 / 115 / 157 3.6 - 7.0X 282 2.0X
tr 597 497 / 638 / 730 395 / 459 / 583 1.0 - 1.5X 569 1.0X
tsort 600 541 / 545 / 551 113 / 153 / 189 3.2 - 5.3X 121 5.0X
tty 588 517 / 530 / 556 174 / 222 / 308 1.9 - 3.4X 294 2.0X
uname 599 156 / 194 / 230 31 / 71 / 109 5.5 - 19.3X 34 17.7X
unexpand 600 508 / 528 / 541 102 / 148 / 196 3.1 - 5.9X 121 5.0X
uniq 600 370 / 391 / 430 119 / 150 / 175 3.4 - 5.0X 58 10.3X
vdir 596 377 / 440 / 553 162 / 263 / 425 1.4 - 3.7X 125 4.8X
wc 600 555 / 570 / 591 109 / 136 / 187 3.2 - 5.5X 125 4.8X
who 600 304 / 332 / 377 69 / 123 / 225 2.7 - 8.8X 70 8.6X

Average 581 371 / 409 / 454 117 / 166 / 220 3.3 - 6.8X 160 6.6X

Table 1. Ranged symbolic execution for resumable and parallel checking for 71 program from GNU Coreutils suite of Unix
utilities. At times the speedup is greater than 10X because of optimal use of caches in KLEE. KLEE is likely more efficient at
solving multiple smaller problems than a single large problem.

co
m

m tr
di

rn
am

e
fa

ct
or

m
kn

od
m

kd
ir su

gr
ou

ps m
v

ch
ro

ot
to

uc
h tty

gi
ns

ta
ll

no
hu

p dd fm
t

se
tu

id
gi

d
m

kt
em

p
ch

co
n

jo
in

ba
se

na
m

e
da

te rm
pa

th
ch

k
ta

c
vd

ir w
c od

sp
lit

ts
or

t
un

ex
pa

nd du en
v

di
rc

ol
or

s pr cu
t

se
q

ec
ho

sh
re

d
ca

t df
he

ad
ba

se
64

pa
st

e
ta

il
st

at
ki

ll
sh

uf
sh

a1
su

m
w

ho
ni

ce st
ty

ex
pa

nd
un

iq
cs

pl
it cp

ru
nc

on nl ln
su

m
ch

m
od te

e id
pr

in
te

nv
pr

in
tf

pi
nk

y
fo

ld
ch

gr
p

ch
ow

n
re

ad
lin

k
un

am
e

1X

8X

15X

Figure 3. Speedup with 10 worker nodes using ranged symbolic execution for 71 program from GNU Coreutils suite of Unix
utilities. Vertical bars show the range of speedup achieved using different random static ranges with the average pointed out.
The line shows the speedup achieved using dynamic load balancing using work stealing.

Program Serial 5+1p 10+1p 20+1p
Name time(s) time(s) speedup time(s) speedup time(s) speedup

comm 607 573 1.1X 630 1.0X 514 1.2X
tr 597 509 1.2X 569 1.0X 595 1.0X
dirname 618 567 1.1X 574 1.1X 526 1.2X
factor 609 557 1.1X 540 1.1X 482 1.3X
mknod 609 593 1.0X 572 1.1X 505 1.2X
dircolors 600 142 4.2X 113 5.3X 95 6.3X
pr 601 138 4.4X 108 5.6X 86 7.0X
cut 600 130 4.6X 105 5.7X 67 9.0X
seq 600 129 4.7X 105 5.7X 102 5.9X
echo 600 139 4.3X 101 6.0X 38 15.8X
fold 600 62 9.7X 45 13.3X 32 18.8X
chgrp 569 74 7.7X 41 13.8X 39 14.6X
chown 598 68 8.8X 41 14.4X 39 15.3X
readlink 600 63 9.5X 41 14.7X 34 17.6X
uname 599 48 12.5X 34 17.7X 27 22.2X

Average 600.5 252.8 5.1X 241.3 7.2X 212.1 9.2X

Table 2. Ranged symbolic execution with work stealing for 15 programs from GNU Coreutils on different number of workers.
The +1 designates a separate coordinator node. These are the worst 5, median 5, and best 5 utilities from Figure 3 based on
performance on 10 workers.

time using the same ranges. Note that while the total time
is pretty close for different random ranges, the time for the
range taking the most time varies a lot. Thus, the benefit of
running in parallel depends on how good a static range is.
This restriction applies to other parallel schemes as well that
use static partitioning, e.g. [40]. The next column shows the
calculated range of speedup achieved. The last two columns
have the time and speedup for 11 processors (10 workers and
1 coordinator) when performing parallel symbolic execution
using work stealing. We chose 10 workers so that the times
can be directly compared to the times for 10 parallel workers
using random static ranges (column 4).

Speedup for parallel symbolic execution using work
stealing ranges from 1.0X (no speedup) to 17.7X. As 17.7 is
more than the number of workers, we investigated and found
that KLEE uses a lot of internal caches which can perform
much better when they are of a smaller size. Thus, KLEE
is likely more efficient at solving smaller problems than one
big problem. This is intuitive as symbolic execution main-
tains a lot of internal state and memory maps with frequent

search operations. These search operations become more ef-
ficient for smaller problems (with or without caching). Thus,
ranged symbolic execution often makes KLEE faster even
when all ranges are executed sequentially. We also note that
13 of the 71 utilities observed a slowdown in at least one
run in a resumable setting. However, on average (last row
in Table 1), even the worst resumable run is faster than a
standard execution. Thus, in most cases, we observe better
performance with resumable symbolic execution.

Figure 3 contains a plot of the speedup of all 71 utilities
ordered by the speedup achieved using work stealing. The
line graph shows the speedup for parallel symbolic execution
using work stealing, while the vertical lines show the range
of speedup for parallel symbolic execution using static ran-
dom ranges. The dot on the vertical line shows the average
speedup for static ranges. Note that for a third of the sub-
ject programs, work stealing gives a speedup similar to the
minimum speedup achieved using static ranges while for the
other two thirds, it is about the maximum speedup achieved
using static ranges or even more. We believe that the first set

1 5 10 20

1X

8X

15X

22X

Figure 4. Speedup achieved by 15 programs from GNU
Coreutils on different number of workers for ranged sym-
bolic execution with work stealing. These are the worst 5,
median 5, and best 5 utilities from Figure 3 based on perfor-
mance on 10 workers. The worst 5 overlap at or near 1.0X
and are hard to distinguish.

of programs have narrow and deep trees while the second set
of programs have broad trees that enable better parallelism.

Table 2 shows the results of running work stealing based
ranged symbolic execution on a smaller set of 15 programs
using 5, 10, and 20 workers with 1 coordinator processor and
compares it to the performance of analyzing sequentially.
Data for 1 and 10 processors is taken from Table 1. This
data is plotted in Figure 4. These are the 5 worst, 5 median,
and 5 best performing programs in the first experiment as
discussed in Section 4.2. The 5 programs that performed
worst in the first experiment do not gain anything from more
processors and hardly give any further speedup. Most of
the other 10 programs, however, gained more speedup. The
speedup possible using any parallel technique for symbolic
execution is restricted by the program structure. If a program
has a deep and narrow execution tree (e.g., one main path and
only branching for error checks), then one or a few paths take
nearly as much time as the time for complete analysis. Any
scheme that completely checks one path on one processor is
unlikely to improve performance of such programs.

4.4 Threats to validity
We tested our technique on one set of programs. It is possible
that other programs exhibit different behavior. We mitigate
this threat by choosing a suite of medium sized programs
and then considering all of them. This can be seen in the
results where we achieve a speedup of 1X (no speedup) to
over 17X.

We selected random paths as range boundaries. We ex-
pect that in real scenarios, it might be more meaningful to
divide ranges using tests from some manual test suite. It is
possible that such ranges from manual tests provide much

worse or much better performance. We mitigate this threat
by repeating the random selection multiple times and report-
ing the range of speedups in both Table 1 and Figure 3.

5. Related Work
Clarke [9] and King [23] pioneered traditional symbolic ex-
ecution for imperative programs with primitive types. Much
progress has been made on symbolic execution during the
last decade. PREfix [4] is among the first systems to show
the bug finding ability of symbolic execution on real code.
Generalized symbolic execution [22] shows how to apply
traditional symbolic execution to object-oriented code and
uses lazy initialization to handle pointer aliasing.

Symbolic execution guided by concrete inputs has been
a topic of extensive investigation during the last six years.
DART [15] combines concrete and symbolic execution to
collect the branch conditions along the execution path.
DART negates the last branch condition to construct a new
path condition that can drive the function to execute on
another path. DART focuses only on path conditions in-
volving integers. To overcome the path explosion in large
programs, SMART [14] introduced inter-procedural static
analysis techniques to compute procedure summaries and
reduce the paths to be explored by DART. CUTE [33] ex-
tends DART to handle constraints on references.

EGT [5] and EXE [6] also use the negation of branch
predicates and symbolic execution to generate test cases.
They increase the precision of symbolic pointer analysis to
handle pointer arithmetic and bit-level memory locations.
KLEE [7] is the most recent tool from the EGT/EXE family.
KLEE is open-sourced and has been used by a variety of
users in academia and industry. KLEE works on LLVM
byte code [1]. It works on unmodified programs written
in C/C++ and has been shown to work for many off the
shelf programs. Ranged symbolic execution uses KLEE as
an enabling technology.

While approaches such as DART, CUTE, and KLEE are
conceptually easy to implement in a parallel setting using
forking on every branch, doing so is unlikely to be feasible
as it would require spawning processes (or threads with ex-
pensive locking) proportional to the number of paths in the
program. As observed in previous work [36, 40], the more
the number of parallel work items, the poorer the perfor-
mance because of high overhead. [36] notes the high com-
munication overheads because of exploring paths separately.
A scheme like forking for each path would not be efficient
because 1) forking across machines is a “very” costly oper-
ation, 2) even on the same machine, forking symbolic ex-
ecution is costly as the address space of the symbolically
executed program will incur heavy copy-on-write penalties
because of the way symbolic execution explores code paths,
and 3) no shared caches for solutions of partial clauses etc.
can be made. As an example, KLEE gets more than 10X
slower if its caching is disabled.

A couple of recent research projects have proposed tech-
niques for parallel symbolic execution [36, 40]. ParSym [36]
parallelized symbolic execution by treating every path ex-
ploration as a unit of work and using a central server to dis-
tribute work between parallel workers. While this technique
implements a direct approach for parallelization [6, 16], it re-
quires communicating symbolic constraints for every branch
explored among workers, which incurs a higher overhead.
In contrast, static partitioning [40] uses an initial shallow
run of symbolic execution to minimize the communication
overhead during parallel symbolic execution. The key idea
is to create pre-conditions using conjunctions of clauses on
path conditions encountered during the shallow run and to
restrict symbolic execution by each worker to program paths
that satisfy the pre-condition for that worker’s path explo-
ration. However, the creation of pre-conditions results in
different workers exploring overlapping ranges, which re-
sults in wasted effort. Moreover, static partitioning does not
use work stealing. In contrast to these existing techniques,
ranged symbolic execution uses dynamic load balancing, en-
sures workers have no overlap (other than on the paths that
define range boundaries), and keeps the communication low.

KleeNet [32] uses KLEE to find interaction bugs in dis-
tributed applications by running the distributed components
under separate KLEE instances and coordinating them using
a network model. KleeNet performs separate symbolic exe-
cution tasks of each component of the distributed application
in parallel. However, it has no mechanism of parallelizing a
single symbolic execution task.

Hybrid concolic testing [27] uses random search to pe-
riodically guide symbolic execution to increase code cov-
erage. However, it explores overlapping ranges when hop-
ping from symbolic execution in one area of code to another,
since no exploration boundaries are defined (other than time
out). Ranged symbolic execution can in fact enable a novel
form of hybrid concolic testing, which avoids overlapping
ranges by hopping outside of the ranges already explored
and not re-entering them.

Staged symbolic execution [37] is a technique to apply
symbolic execution in stages, rather than the traditional ap-
proach of applying it all at once, to compute abstract sym-
bolic inputs that can later be shared across different meth-
ods to test them systematically. Staged symbolic execution
conceptually divides symbolic execution in horizontal slices
called “stages” that can be executed sequentially. On the
other hand, ranged symbolic execution conceptually divides
symbolic execution in vertical slices called “ranges” that can
be explored in parallel.

Directed incremental symbolic execution [30] leverages
differences among program versions to optimize symbolic
execution of affected paths that may exhibit modified behav-
ior. The basic motivation is to avoid symbolically execut-
ing paths that have already been explored in a previous pro-
gram version that was symbolically executed. A reachability

analysis is used to identify affected locations, which guide
the symbolic exploration. We believe ranged symbolic exe-
cution can provide an alternative technique for incremental
symbolic execution where program edits are “wrapped” in
test pairs that are computed based on the edit locations and
the pairs provide the ranges for symbolic execution.

Other tools in the dynamic analysis domain have also
seen parallelization efforts. Korat has been parallelized in
two ways [28, 35]. Parallel model checkers have also been
introduced. Stern and Dill’s parallel Murφ [41] is an example
of a parallel model checker. It keeps the set of visited states
shared between parallel workers so that the same parts of the
state space are not searched by multiple workers. Keeping
this set synchronized between the workers results in expen-
sive communication so the algorithm does not scale well.

A similar technique was used by Lerda and Visser [42] to
parallelize the Java PathFinder model checker [26]. Parallel
version of the SPIN model checker [18] was produced by
Lerda and Sisto [25]. More work has been done in load bal-
ancing and reducing worker communication in these algo-
rithms [20, 24, 29]. Parallel Randomized State Space Search
for JPF by Dwyer et al. [11] takes a different approach
with workers exploring randomly different parts of the state
space. This often speeds up time to find first error with
no worker communication. However when no errors are
present, every worker has to explore every state. Parallel
search algorithms in general have been studied [17, 19, 21]
even earlier.

6. Future work
We envision a number of exciting new research avenues that
build on this paper. The notion of sorting execution paths and
the corresponding test inputs can enable novel techniques for
regression testing, e.g., by using binary search—an elemen-
tary algorithm—on a sorted test suite, say to find the small-
est and largest paths that “enclose” the changed code and
identify an impacted range. Developing the idea of pausing
and resuming an analysis using a succinct representation of
the analysis state can be generalized to other program anal-
ysis techniques to address a key practical problem in pro-
gram analysis, namely “how to proceed if an analysis run
times out?”. Ranging the run of an analysis can allow de-
velopment of novel methods for applying different program
analysis techniques in synergy, e.g., where each technique
handles its specific range(s), to further scale effective check-
ing of complex programs. The insights into ranged symbolic
execution can help develop novel forms of ranged analysis
for other techniques, e.g., a run of a software model checker
can be ranged [13] using sequences of choices along exe-
cution paths, thereby conceptually restricting the run using
“vertical” boundaries, which contrasts with the traditional
approach of using a “horizontal” boundary, i.e., the search
depth bound, and can provide an effective way to deal with
the state-space explosion problem.

7. Conclusions
The connection between symbolic execution and test inputs—
specifically, to use symbolic execution to generate inputs—
was first established over three decades ago, and since then,
has undergone extensive research investigation. But this con-
nection is conceptually in just one direction: from symbolic
execution to tests. The key novelty of our work is to establish
the connection in the opposite direction—from a test input
to symbolic execution—specifically, to use a test input to
encode the state of a run of symbolic execution—and show
how this direction enables a number of novel approaches for
more effective symbolic execution for test input generation.

The focus of this paper was on our approach to range
symbolic execution using two tests, which enables (statically
and dynamically) partitioning the symbolic execution prob-
lem into several sub-problems for scalability. As an enabling
technology we leveraged the open-source tool KLEE, which
is a state-of-the-art tool for symbolic execution. Experimen-
tal results using 71 programs chosen from the widely de-
ployed GNU Coreutils set of Unix utilities show that our
approach provides a significant speedup over KLEE. For ex-
ample, using 10 worker cores, we achieve an average speed-
up of 6.6X for the 71 programs.

We believe our encoding of the state of an analysis run
using a single test input and our ranging of an analysis
using two test inputs will provide a foundation for new
scalable approaches for more effective symbolic execution.
We hope such approaches will also be developed for other
analysis techniques, such as software model checking and
sound static analysis, and lead to a verification tool-set that
enables the development of more reliable software at a much
reduced cost.

Acknowledgments
We thank Lingming Zhang and the anonymous reviewers for
detailed and helpful comments. This material is based upon
work partially supported by the Fulbright program, the Na-
tional Science Foundation under Grant No. CCF-0845628,
and AFOSR grant FA9550-09-1-0351.

References
[1] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke.

LLVA: A Low-level Virtual Instruction Set Architecture. In
Proc. 36th International Symposium on Microarchitecture
(MICRO), pages 205–216, 2003.

[2] S. Anand, C. S. Păsăreanu, and W. Visser. JPF-SE: a Symbolic
Execution Extension to Java PathFinder. In Proc. 13th , pages
134–138, 2007.

[3] C. Barrett and C. Tinelli. CVC3. In Proc. 19th Inter-
national Conference on Computer Aided Verification (CAV),
pages 298–302, 2007.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A Static Analyzer
for Finding Dynamic Programming Errors. Software Practice
Experience , 30(7):775–802, June 2000.

[5] C. Cadar and D. Engler. Execution Generated Test Cases:
How to make systems code crash itself. In Proc. International
SPIN Workshop on Model Checking of Software , pages 2–23,
2005.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically Generating Inputs of Death. In
Proc. 13th Conference on Computer and Communications
Security (CCS), pages 322–335, 2006.

[7] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In Proc. 8th Symposium on Operating
Systems Design and Implementation (OSDI), pages 209–224,
2008.

[8] L. A. Clarke. A System to Generate Test Data and Symboli-
cally Execute Programs. IEEE Transactions on Software En-
gineering , 2(3):215–222, May 1976.

[9] L. A. Clarke. Test Data Generation and Symbolic Execution
of Programs as an aid to Program Validation. PhD thesis,
University of Colorado at Boulder, 1976.

[10] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 337–
340, 2008.

[11] M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare. Par-
allel Randomized State-Space Search. In Proc. 2007 Inter-
national Conference on Software Engineering (ICSE), pages
3–12, 2007.

[12] B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid.
Assertion-based Repair of Complex Data Structures. In Proc.
22nd International Conference on Automated Software Engi-
neering (ASE), pages 64–73, 2007.

[13] D. Funes, J. H. Siddiqui, and S. Khurshid. Ranged model
checking. Under submission.

[14] P. Godefroid. Compositional Dynamic Test Generation. In
Proc. Symposium on Principles of Programming Languages
(POPL), pages 47–54, 2007.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In Proc. 2005 Conference on
Programming Languages Design and Implementation (PLDI),
pages 213–223, 2005.

[16] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated
Whitebox Fuzz Testing. In Proc. Network and Distributed
System Security Symposium (NDSS), 2008.

[17] A. Grama and V. Kumar. State of the Art in Parallel Search
Techniques for Discrete Optimization Problems. IEEE Trans-
actions on Knowledge and Data Engineering , 11(1):28–35,
Jan. 1999.

[18] G. J. Holzmann. The Model Checker SPIN. IEEE Transac-
tions on Software Engineering , 23(5):279–295, May 1997.

[19] V. K. Janakiram, D. P. Agrawal, and R. Mehrotra. A Random-
ized Parallel Backtracking Algorithm. IEEE Transactions on
Computers, 37(12):1665–1676, Dec. 1988.

[20] M. D. Jones and J. Sorber. Parallel Search for LTL Violations.
International Journal Software Tools Technology Transfer , 7
(1):31–42, Feb. 2005.

[21] R. M. Karp and Y. Zhang. Randomized Parallel Algorithms
for Backtrack Search and Branch-and-bound Computation.
Journal of the ACM, 40(3):765–789, July 1993.

[22] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
Symbolic Execution for Model Checking and Testing. In
Proc. 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages
553–568, 2003.

[23] J. C. King. Symbolic Execution and Program Testing. Com-
munications ACM, 19(7):385–394, July 1976.

[24] R. Kumar and E. G. Mercer. Load Balancing Parallel Explicit
State Model Checking. Electronics Notes Theory Computer
Science , 128(3):19–34, Apr. 2005.

[25] F. Lerda and R. Sisto. Distributed-Memory Model Checking
with SPIN. In Proc. 5th International SPIN Workshop on
Model Checking of Software , pages 22–39, 1999.

[26] F. Lerda and W. Visser. Addressing Dynamic Issues of Pro-
gram Model Checking. In Proc. 8th International SPIN Work-
shop on Model Checking of Software , pages 80–102, 2001.

[27] R. Majumdar and K. Sen. Hybrid Concolic Testing. In
Proc. 29th International Conference on Software Engineering
(ICSE), pages 416–426, 2007.

[28] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and
D. Marinov. Parallel Test Generation and Execution with
Korat. In Proc. 6th joint meeting of the European Software
Engineering Conference and Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 135–144, 2007.

[29] R. Palmer and G. Gopalakrishnan. A Distributed Partial Order
Reduction Algorithm. In Proc. 22nd International Conference
on Formal Techniques for Networked and Distributed Systems
(FORTE), page 370, 2002.

[30] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed In-
cremental Symbolic Execution. In Proc. 2011 Conference on
Programming Languages Design and Implementation (PLDI),
pages 504–515, 2011.

[31] D. A. Ramos and D. R. Engler. Practical, Low-Effort Equiv-
alence Verification of Real Code. In Proc. 23rd International
Conference on Computer Aided Verification (CAV), pages
669–685, 2011.

[32] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle. KleeNet: Discovering In-

sidious Interaction Bugs in Wireless Sensor Networks Before
Deployment. In Proc. 9th International Conference on In-
formation Processing in Sensor Networks (ISPN 2010), pages
186–196, 2010.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit
Testing Engine for C. In Proc. 5th joint meeting of the
European Software Engineering Conference and Symposium
on Foundations of Software Engineering (ESEC/FSE), pages
263–272, 2005.

[34] C. Seo, S. Malek, and N. Medvidovic. Component-Level
Energy Consumption Estimation for Distributed Java-Based
Software Systems. In Proc. 11th International Symposium
on Component-Based Software Engineering, pages 97–113,
2008.

[35] J. H. Siddiqui and S. Khurshid. PKorat: Parallel Generation of
Structurally Complex Test Inputs. In Proc. 2nd International
Conference on Software Testing Verification and Validation
(ICST), pages 250–259, 2009.

[36] J. H. Siddiqui and S. Khurshid. ParSym: Parallel Symbolic
Execution. In Proc. 2nd International Conference on Software
Technology and Engineering (ICSTE), pages V1: 405–409,
2010.

[37] J. H. Siddiqui and S. Khurshid. Staged Symbolic Execution.
In Proc. Symposium on Applied Computing (SAC): Software
Verification and Testing Track (SVT), 2012.

[38] M. Snir and S. Otto. MPI-The Complete Reference: The MPI
Core. MIT Press, 1998.

[39] N. Sörensson and N. Een. An Extensible SAT-solver. In Proc.
6th International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 502–518, 2003.

[40] M. Staats and C. Pǎsǎreanu. Parallel Symbolic Execution
for Structural Test Generation. In Proc. 19th International
Symposium on Software Testing and Analysis (ISSTA), pages
183–194, 2010.

[41] U. Stern and D. L. Dill. Parallelizing the Murphi Verifier.
In Proc. 9th International Conference on Computer Aided
Verification, pages 256–278, 1997.

[42] W. Visser, K. Havelund, G. Brat, S. P. Park, and F. Lerda.
Model Checking Programs. Automated Software Engineering
Journal , 10(2):203–232, Apr. 2003.

